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Planck distribution for a complex q-boson gas 
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Ahsbct. The q-deformed boson gas at finite temperature is investigated for the quantum 
deformation parameter q to be complex (r=ln q=a+ih).  It is shown that the real part of 
the energy density distribution corresponds to the Planck energy density distribution for a 
suitable range of the parameter b. which restricls the maximum number of quantum states 
in the model of the system. The spectra of q-oscillator are ditTerent for diKerent (a, 6)- 
values. The classical dimensionless constant, characterizing the Wien shift law. is presented 
as a function of (a, b )  and, in the spirit o f  the theory of q-deformed boson gas, it is possible 
to interpret it as the radiation of a non-ideal black-body or a real body. The role of the 
imaginary part of oscillator energy is also studied. 

Martin-Delgado [ I ]  has recently studied the q-deformation of the Planck energy density 
distribution of a boson gas (the black-body radiation), with the bosons taken to obey 
the quantum deformed algebra of the harmonic oscillator (the S U J 2 ) )  [2].  For x ( = I o /  
k T )  >> 1 i.e. for higher frequencies and/or low temperatures, he obtained a q-deformed 
Wien law, adding only the first two terms of the infinite sum. However, the same law 
is also used for XE [0, CO], which resulted in showing the role of qdeformation parameter 
s(=ln q) resembling that of temperature Tin the energy density distribution. The maxi- 
mum xm. of the q-deformed Wien energy distribution, which gives the q-deformed 
Wien shift law, is interpreted in terms of the modification of the Planck constant I due 
to the q-deformation parameter s. Such an interpretation comes from the opposing 
roles of s and T in xmrx(or mmnr),  with s taken to resemble T. This is one possible 
interpretation of the parameter q when s has a real value. For this special case of real 
s, the energy eigenvalue of the q-oscillator is positive, nonlinearly increasing function 
of quantum number n, the number ofenergy states, and the sum in the partition function 
quickly converges compared with the case of the normal (q+ I or s-0) oscillator (see 
figure 1, curves 1 and 4). 

In view of the earlier works 13-61 on quantum groups. the parameter q(=d) can be 
complex ( s=a+ib ) .  This generalization allows us to consider many kinds of energy 
spectra of the q-oscillator, which are interesting from the theoretical point ofview and 
need experimental verification. 

II UGC National Fellow. 
1 Present address: lnstituto de Fisica, Universidad de Cuanajuato, Apdo Postal E-143, Leon, Cto. Mexico. 

0305-4470/94/051427+07$19.50 Q 1994 IOP Publishing Ltd 1427 



1428 R K Gupta ef a1 

t -50.0 

-lO0.01 4 , , 
0 10 20 30 

n 

Figure 1. Real part of the energy Re(E) (in units of h j 2 )  as a function of the quanlum 
number n, the number of energy states. The parameters (U, 6) in s=u+ib have the following 
values: n=O, b=O (curve I): 0, 0.5 (curve 2); 0.01, 0.3 (curve 3); 0.5, 0 (curve 4); 1, 0.2 
CUNC (5). For the c u m  5, the maximum value of quantum number n is 5, i.e. n,..=5. 

The energy eigenvalues E(q, n) for a q-harmonic oscillator, with zero point energy 
subtracted, are [2] 

E(q, n)  = $iw([n] + [ i f +  I]- 1). (1) 
The square bracket in (1) introduces the parameter q (or s) of the SU,(2) algebra by 
defining [2] 

where, q=e', s=a+ ib and a, b are real numbers. Notice the symmetry of (2) for q-q-'. 
For q-1 (or s-0) we obtain [xl-x and hence E(q, n)+fimn, the energy of the simple 
classical oscillator. When q is complex the energy eigenvalue also becomes complex: 

E(q, n)  =Re E(q, n) +i  Im E(q, n) (30) 
where 

with AI," and &.. as the real functions of n, a and b:  

cosh(n+l)acosnb-coshnacos(n+ I)b 
cosh a -cosh b 

sinh(n+ l ) a  sin nb-sinh nu sin(n+ llb 

a',"= - 1  

k" = 
cosh a-cosh b 
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For a boson gas in canonical ensemble, obeying the q-deformed harmonic oscillator 
algebra [Z], the partition function Z(q, o, T )  is defined [ l ]  as 

or, equivalently, for complex q 

Here, we have written the upper limit as nmnx and not infinity since the numerical 
calculations are always carried out with finite n(=nmaX). We enumerate the energy levels 
in an order that the real part of energy is a positive increasing function of quantum 
number n, varied from n=O to n,,,. From the physical point of view only these states 
are interesting because the probability of occupation of a higher energy level (propor- 
tional to [exp(-pE(q, n ) l )  at finite temperature should be smaller than the lower one. 
We can choose nmar from the convergence condition of the series (56). These series 
converge absolutely if the ratio of the ( n +  11th and nth terms is smaller than 1. From 
(k), (46) and (5b) one needs 

or, equally, 

exp{-xe("+l)"cos(n+ 1)b) < 1 

with 

Io 
k T  

x=-. 

From (6a) one obtains 

Iz 
n<--1. 

2b 

Then, nmaX may be defined as 

where the brackets {-} mean r/Zb. According to (7u) the physically 
interesting values of 6,  when nmax varies from 0 to CO, are included in the following 
interval 

:integral part c 

O <  b<n/4.  (76) 
For the classical and Martin-Delgado [ I ]  cases, b=O; then nlnax= CO. Practically, for 
the q-deformed boson case when s is real and s(=a)> 1 only the first few terms in the 
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sum of the partition function are needed (see (64). It is clear from (6a) that the two- 
terms approximation used in [ I] is suitable for the case of large a and large x. 
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The energy density for the q-boson gas is written as [I]  

U(q, w, T)="& c3 Iz $). 
Then, for complex q. one obtains from (3a) to (5b) the following equations for the real 
and imaginary parts of U :  

where 

I 3 x1x2- Yl Yz Re U(q, x) = ix x:+ Y: 

XIY2+X2Yl 
x:+ Y: 

Im U(q, x) = $2 

nmx 

yI = exp(- b-al..){az,. COS(~X$,J sin(fx&?,)} (W 
" - 0  

"mu 

Y,= c exp(-$xaI,,) sin(lx&,+). (104 
ll-0 

Now, we investigate the Wien regime (x>> 1, large energy and/or low temperature) for 
the system with a limited number of energy levels, defined by parameter b via (7). The 
two-terms approximation gives the following complex-q extension of Wien law for the 
real part of the energy density: 

Re U(q, x) s x 3  exp(-x cosh a cos b){cosh a cos b cos(x sinh a sin b) 
+sinh a sin b sin(x sinh a sin b)}. (11) 

For b=O we obtain the Martin-Delgado result [ I ]  and the limit q-t l  (a+O, b-0) 
reproduces the classical Wien law. The maximum Re U occurs at x," which is the 
solution of the following trancendental equation: 

sinh a sin b tan(x,. sinh a sin b) 

(12) 
- x,*(cosh' a cos2 b -sinh2 a sin2 6) - 3 cosh a cos b - 

3 - 2x,, cosh a cos b 

The solution x,. can be written as follows 

x,. =f (a, b) (134 

f ( a ,  0) = 3/cosh a (13b) 

where, in special cases, the functionfhas the following forms: 

f(0, b) = 3/cos b. (134 
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Notice that (13b) is the result of Martin-Delgado [I], which is generalized here to the 
case of complex q. 

The complex-q Stefan law is obtained in the two-terms approximation by integrating 
(11): 

(14) 

tanh a tan b=i1/,,6. (15) 

lZ(kBT)” {I-Z(tanhata11b)~-3(tanha tan b)”]~ ._ 
us‘ef(q’ T)= ~c’fi~(cosh a cos.b)j 

We note from (14) that, for a and b related as follows, the q-oscillator is non-radiating: 
{1+(tanhatanb)2)4 

In the two-tenns approximation, the maximum b-value is b= n/S (see (7a)) .  Then (15) 
has no solution for a. In general, however, the Stefan-Boltzmann constant is reduced 
in comparison with the classical case. 

Similarly, for x<<l (the Rayleigh-Jeans regime) it is of interest to find the corre- 
sponding value of n,n.x. However, in this case, the 2 multiplier in (11) dominates and 
the n,,,value used above can be used here too. 

Figure 1 shows the Re E(q, n )  (in units of fico/2) as a function of the quantum 
number n. For the classical case of q =  1 (a=O, b=O), this dependence is linear (curve 
1). The curves 2 and 3, corresponding to (a=O, b=O.5) and (a=0.01, b=0.3) respec- 
tively, result in oscillating spectra. The curve 4 spectrum for reds (b=O) is a monoton- 
ically increasing function of n (here real s=a=0.5). The curve 5 for ( a = l ,  b=0.2) is 
the case of a limited number of the energy levels, where the real part of energy is an 
almost exponentially increasing function of n for n < 5 i.e. nmax= 5. For n > 5 the energy 
changes from a large positive value to a negative one and loses physical meaning. Thus, 
different (a,  b)-values give rise to different energy spectra and hence different n,,,-values 
for convergence of the series (5b). 

Figure 2 illustrates the real part of the energy density Re U(g, x) for several values 
of deformation parameter s. We notice that the Planck distribution. is obtained not 

Figure 2. Real part of the energy density Re(U)  as a function of the dimensionless variable 
x ( = f i o / k T ) .  The values 01 the parameters (a. h)  and number or terms included in the 
calculations have the following values: a=O, b=O, rrmx=30 (curve I ) ;  0.5.0, 30 (curve 2); 
1,0,4 (curve 3); I ,  0.25,4 (curve 4).  
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only for b = O  (curves 1, 2 and 3) but also for b#O (curve 4). When q is real 
(afO, b=O) the role of a is similar to that of the temperature on the energy density 
distribution, as already pointed out by Martin-Delgado [I]. The same is  not true when 
only the imaginary term b is varied (see curves 3 and 4). Comparing curves 3 and 4, 
which have the same U-value but different b, one sees that Re U(,) for x>2 is strongly 
depressed for the b#O case. In each case, however, the low frequency and/or high 
temperature (Rayleigh-Jeans) region of x<< 1 is not affected much because of the x3 
multiplier in (1 1). The C U N ~ S  1 and 2 are plotted for summing the n,,.=30 terms and 
the curves 3 and 4 are for n,,,=4 terms, in accordance with (74. 
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Fignre 3. The Wien shift law in a q-deformed boson gas model for radiation of a black- 
body. The x,-=f(u, b) (see text, equation (130)) as a iunction of deformation parameter 
(a. b). b=O (curve I ) :  0.2 (curve 2): 0.4 (curve 3). 

Figure 3 shows how the universal constantf(u, 6 )  or xmax (equal to 3 for the classical 
case of a=O, b=O) vary with deformation parameter q. The curves 2 and 3 show that 
for ag1.2 and b#O the maximum of the energy density distribution of a radiating 
body at fixed temperature (curve 1) is shifted to smaller wavelength (xmar may be 
expressed as (hc/k) /&J).  This result may be relevant for the radiation of a non- 
ideal black-body (a real body) and is being subjected to experimental verification at 
Hanoi [7]). 

Figure 4 illustrates the dependence of the imaginary part of the energy I m ( Q  (in 
units of fiw/2) on the a, b parameters. For b#O, Im(E) is increased suddenly with 
increasing quantum number n-almost exponentially for large U. Since the imaginary 
part of the energy means the probability of damping of the quantum state, it is convino 
ing that in the case of the complex q-deformation parameter the first few terms approxi- 
mation in the series for the partition function is reasonable when q is chosen within a 
suitable range. For the same reason the model system with limited quantum states, 
taken numerically in increasing order of energy and quantum number, has been investi- 
gated here. 

Summarizing, we have shown that for the complex qdeformation parameter the q- 
boson gas results in many varied energy spectra. This ranges from a monotonically 
increasing function for Re Eas a function of the number of energy states to an oscillating 
one. Also, the case of a limited number of energy states is presented, which fixes the 
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Figore 4. Imaginary part of the energy Im(E) (in units of lio/Z) as a function of the 
quantum number n, the number of energy states. The parameters (a, b )  have the following 
values: a=O, b=O (curve I): 0.2,O.Z (curve 2): 0.5,O.Z (curve 3). 

value of imaginary term b in the complex q-deformation parameters (=a+ib). For the 
fixed range of b-values, the Planck distribution is obtained not only for real s (=a) but 
also for complex s. However, it is only the real parameter a that behaves like the 
temperature for the energy density distribution. 

Both the q-deformed Wien shift law and the Stefan-Boltmann law are obtained 
for the complex s. The resulting q-Wien shift law is interpreted to be the case of a non- 
ideal black-body (real body) radiation, which needs experimental verification. 

Finally, the Im Eas a function of the number of energy states is studied for different 
(a, b) parameters. Its role as the damping probability of quantum states is illuminated. 
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